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Abstract
The original Jaynes–Cummings model is described by a Hamiltonian which is
Hermitian and exactly solvable. Here, we extend this model by several types
of interactions leading to a non-Hermitian operator which does not satisfy the
physical condition of spacetime reflection symmetry (PT symmetry). The new
Hamiltonians are either exactly solvable admitting an entirely real spectrum or
quasi-exactly solvable with a real algebraic part of their spectrum.

PACS numbers: 03.65.Pm, 31.30.Jv

1. Introduction

Several new theoretical aspects of quantum mechanics have been developed in the last few
years. In a series of papers (see, e.g., [1, 2] and [3] for a recent review), it is shown that
the traditional self-adjointness requirement of the Hamiltonian operator is not a necessary
condition to guarantee a real spectrum and that the weaker condition of PT invariance of the
Hamiltonian is sufficient for that purpose. An alternative possibility for an operator to admit
a real spectrum is also developed in [4]. It is the notion of pseudo-Hermiticity. Following
the ideas of [4], let us recall that a Hamiltonian is called η pseudo-Hermitian if it satisfies
the relation ηHη−1 = H †, where η denotes a linear Hermitian operator. It is this new notion
(i.e., pseudo-Hermiticity property) of non-Hermitian Hamiltonians which explains the reality
of their energy spectrum. This important property has further been considered in [5, 6].

Another direction of development of quantum mechanics is the notion of quasi-exact
solvability [7, 8]. It provides techniques to construct linear operators preserving a finite-
dimensional subspaceV of the Hilbert space. Accordingly, the so-called quasi-exactly solvable
(QES) operators, once restricted onV , can be diagonalized by means of algebraic methods. The
QES property is strongly connected to finite-dimensional representation of Lie or graded Lie
algebras [7, 9, 10]. Amongst many models used to describe quantum properties of physical
systems, the Jaynes–Cummings model plays an important role [11–14]. It describes in a
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simple way the interaction of photons with a spin- 1
2 particle. From the mathematical point of

view, the Jaynes–Cummings model is described by a self-adjoint operator and it is completely
solvable in a sense that the entire spectrum can be computed algebraically. The purpose of
this paper is to consider operators generalizing the Jaynes–Cummings Hamiltonians which are
neither self-adjoint nor PT invariant but are pseudo-Hermitian with respect to two different
operators. In particular, from the original Jaynes–Cummings model (JCM in the following),
we construct an extended one by adding a polynomial of the form P(a†, a) (a†, a are the usual
creation and annihilation operators) of degree d � 2 in the diagonal part of the Hamiltonian.
Some particular choices of P are constructed in such a way that the resulting operator becomes
QES. The non-diagonal interaction part is also modified in such a way that (i) multiple photon
exchanges are allowed and (ii) the full operator can be Hermitian or pseudo-Hermitian.

In section 2, we give the Hamiltonian considered in [5] and express it in terms of
differential operator of a real variable x. This reveals the exact solvability of the Hamiltonian if
these differential operators preserve one (or more) set of polynomials of appropriate degrees in
x. In section 3, we propose a family of operators which generalize the original JC Hamiltonian
in several respects. The (pseudo)-Hermiticity of these operators are analysed and the spectra
and the eigenvectors are computed in details for a number of them. The differences in the
spectrum corresponding to Hermitian and pseudo-Hermitian are pointed out. In particular,
the energy eigenvalues are entirely real in spite of the fact that they are associated with a non-
Hermitian and non PT -invariant Hamiltonian. The reality of those eigenvalues is ensured by
the pseudo-Hermiticity of the Hamiltonians. Section 4 is devoted to QES extensions of the
JCM. These are constructed in such a way that, both, one-photon and two-photon exchange
terms coexist in the non-diagonal interacting terms. By construction, these new models
preserve finite-dimensional vector spaces of the Hilbert spaces. The algebraic part of the
spectrum is computed in section 5. Further properties of these new types of QES operators,
say HT , can be discussed. Namely, following the ideas of [15] we show in section 6 that the
solutions of the spectral equation HT ψ = Eψ for generic values of E lead to new types of
recurrence relations. The relations between HT and specific graded algebras are pointed out
in section 7. Finally, section 8 contains our concluding remarks.

2. Exactly solvable pseudo-Hermitian Hamiltonian

In this section, we consider the Hamiltonian describing a system of a spin- 1
2 particle in the

external magnetic field, �B, which couples to a harmonic oscillator through some non-Hermitian
interaction [5]:

H = µ�σ · �B + h̄ωa†a + ρ(σ+a − σ−a†). (1)

Here, �σ denotes the Pauli matrices, ρ is an arbitrary real parameter and σ± ≡ 1
2 [σx ± iσy]. σ+

and σ− can be expressed in matrix form as

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (2)

Following the ideas of [7], our purpose is to transform the above Hamiltonian into an
appropriate differential operator which preserves a family of vector spaces formed by couples
of polynomials in the variable x. For this purpose, we use the usual creation and annihilation
operators a† and a, respectively, which are defined as follows:

a† = p + imωx√
2mωh̄

, a = p − imωx√
2mωh̄

, (3)
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where p = −i d
dx

. The external magnetic field is chosen in z-direction (i.e., �B = B0�z) so that
the Hamiltonian defined in equation (1) is reduced and is given by

H = ε

2
σz + h̄ωa†a + ρ(σ+a − σ−a†), (4)

where ε = 2µB0. As σ
†
± = σ∓, it is pointed out that this Hamiltonian is not Hermitian:

H † = ε

2
σz + h̄ωa†a − ρ(σ+a − σ−a†),

�= H. (5)

Thus as,

PT H(PT )−1 = −ε

2
σz + h̄ωa†a + ρ(σ+a

† − σ−a),

�= H, (6)

one can easily check that the Hamiltonian (1) is not PT symmetric, i.e. H �= HP T [1].
The next step is to write H in terms of differential operators (i.e., p = −i d

dx
) and of variable

x. The purpose of these transformations is to reveal the exact solvability of the operator H by
using the quasi-exactly solvable (QES) technique as has been considered in [14]. Replacing
the operators a† and a by their expressions (as given in equation (3)) in equation (4), the
Hamiltonian of the model is written now as follows:

H = ε

2
σz +

p2 − mω + m2ω2x2

2m
+ ρ

[σ+(p − imωx) − σ−(p + imωx)]√
2mωh̄

. (7)

In order to reveal the solvability of the above operator H, we first perform the standard (often
called ‘gauge’) transformation:

H̃ = R−1HR, R = exp

(
−mωx2

2

)
. (8)

After some algebra, the new Hamiltonian H̃ is of the form

H̃ = ε

2
σz − 1

2m

d2

dx2
+ ωx

d

dx
+ ρ

[σ+p − σ−(p + 2imωx)]√
2mωh̄

= ε

2
σz +

p2

2m
+ ωx

d

dx
+ ρ

[σ+p − σ−(p + 2imωx)]√
2mωh̄

. (9)

Replacing σz, σ+ and σ− by their matrix form, the final form of the Hamiltonian H̃ is

H̃ = ε

2

(
1 0
0 −1

)
+

(
p2

2m
+ ωx d

dx
0

0 p2

2m
+ ωx d

dx

)
− ρ

(
0 − p√

2mωh̄

p+2imωx√
2mωh̄

−0

)

=

 p2

2m
+ ωx d

dx
+ ε

2 ρ
p√

2mωh̄

−ρ
p+2imωx√

2mωh̄

p2

2m
+ ωx d

dx
− ε

2


 . (10)

Hence, the operator H̃ is typically QES because it preserves a finite-dimensional vector spaces
of polynomials, namely, Vn = (Pn−1(x), Pn(x))t with n ∈ N. Moreover, H̃ is exactly solvable
because n does not have to be fixed (it can be any nonnegative integer).

Note that the above Hamiltonian H̃ is not invariant under simultaneous parity operator
(P ) and time reversal (T ) reflection (i.e., respectively x → −x and i → −i) [1]. Even if the
operator H̃ (therefore H ) is non-Hermitian and not PT invariant, it was pointed out that its
spectrum is real. The reality of the eigenvalues of H is a consequence of the unbroken Pσz

(i.e., combined parity operator P and Pauli matrices σz) invariance of H (i.e., [H,Pσz] = 0).
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In other words, the spectrum is real because H is pseudo-Hermitian with respect to σz

(i.e., σzHσ−1
z = H †) and also to the parity operator P (i.e., PHP −1 = H †) [4–6]. We

would like to mention that it is not necessary to calculate the energy eigenvalues and
their corresponding eigenvectors of H because they have been determined in [5]. In the
following section, we will construct the spectrum of the generalized Hamiltonian presented in
equation (1).

3. Family of exactly solvable Hamiltonians

The original JCM is defined by the Hamiltonian

H = ε

2
σ3 + h̄ωa†a + ρ(aσ+ + a†σ−), (11)

where ρ is a real parameter (i.e., it is a real coupling constant). It can be easily checked that
the Hamiltonian H is Hermitian.

In the next section, we will consider an extension of the above JCM Hamiltonian in the
form

H = ε

2
σ3 + h̄ωa†a + P(a†a) + ρ(akσ+ + φ(a†)kσ−), (12)

where φ = ±1 and P(a†a) denotes a polynomial of degree d � 2, k is an integer �1 and
ρ is an arbitrary real parameter. In fact, the above Hamiltonian is non-Hermitian (i.e., for
φ = −1) and not PT invariant but it satisfies the pseudo-Hermiticity with the operators
P (operator of parity) and σ3 (Pauli matrices), but for φ = +1 the Hamiltonian given by
equation (12) becomes Hermitian. For both cases, it can be easily observed that the energy
spectrum is entirely real. Thus, note that the above Hamiltonian (12) is a generalization of the
Hamiltonians given by equations (1) and (11). The matrix form of H is(

h̄ωa†a + P(a†a) + ε
2 ρak

φρ(a†)k h̄ωa†a + P(a†a) − ε
2

)
(13)

which can be easily checked to preserve the vector spaces:

Vn = span

{(|n〉
0

)
,

(
0

|n + k〉
)}

, n ∈ N. (14)

It means that the action of the operator H on the vectors states
(|n〉

0

)
and

(
0

|n+k〉
)

can be expressed

as linear combinations of these same states. Here, we are allowed to conclude that H is exactly
solvable because it preserves the vector space Vn for any integer n.

The next step is to find the energy eigenvalues and their corresponding eigenvectors of
the Hamiltonian H for φ = −1 and for φ = +1. For this purpose, we recall the following
identities [5]:

a†a
∣∣n, 1

2ms

〉 = n
∣∣n, 1

2ms

〉
, σ3

∣∣n, 1
2ms

〉 = ms

∣∣n, 1
2ms

〉
, σ+

∣∣n, 1
2

〉 = 0;
(15)

σ+

∣∣n,− 1
2

〉 = ∣∣n, 1
2

〉
, σ−

∣∣n,− 1
2

〉 = 0; σ−
∣∣n, 1

2

〉 = ∣∣n,− 1
2

〉
,

with n and ms = ±1 are respectively the eigenvalues of the number operator a†a and the
operator σ3. It is readily seen that the state

∣∣0,− 1
2

〉
is a ground state of the operator H (i.e., it

is constructed by the lowest values of n and ms which are respectively 0 and −1). We have
now to consider the action of H to the state

∣∣0,− 1
2

〉
in order to find its associated eigenvalue:
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H

∣∣∣∣0,−1

2

〉
= ε

2
σ3

∣∣∣∣0,−1

2

〉
+ h̄ωa†a

∣∣∣∣0,−1

2

〉
+ P(a†a)

∣∣∣∣0,−1

2

〉

+ ρakσ+

∣∣∣∣0,−1

2

〉
+ φρ(a†)kσ−

∣∣∣∣0,−1

2

〉
,

= ε

2
σ3

∣∣∣∣0,−1

2

〉
,

= −ε

2

∣∣∣∣0,−1

2

〉
. (16)

It is proved now that − ε
2 is the eigenvalue of the ground state

∣∣0,− 1
2

〉
. It is easily shown that

the action of the Hamiltonian H to the next state
∣∣0, 1

2

〉
gives the following linear combination

of two states and
∣∣k,− 1

2

〉
:

H

∣∣∣∣0,
1

2

〉
= ε

2

∣∣∣∣0,
1

2

〉
± ρ

√
k!

∣∣∣∣k,−1

2

〉
. (17)

The state
∣∣k,− 1

2

〉
under the action of H leads also to a linear combination of the two above

states:

H

∣∣∣∣k,−1

2

〉
=

(
h̄ωk + P(k) − ε

2

) ∣∣∣∣k,−1

2

〉
+ ρ

√
k!

∣∣∣∣0,
1

2

〉
. (18)

The excited states
∣∣0, 1

2

〉
and

∣∣k,− 1
2

〉
span an invariant subspace of the space of states so that

one can deduce the following Hamiltonian matrix:

Hk =
(

ε
2 ρ

√
k!

φρ
√

k! h̄ωk + P(k) − ε
2

)
. (19)

Particularly, for k = 1, P (k) = 0 (i.e., P(k) = kd, d � 2) and considering φ = −1,Hk

becomes the matrix H1 constructed in [5]. One can find the eigenvalues of the Hamiltonian
matrix (19) by solving the following usual equation (i.e., characteristic polynomial equation):

det(Hk − λ11) = 0,(
ε
2 − λ ρ

√
k!

φρ
√

k! h̄ωk + P(k) − ε
2 − λ

)
= 0,

4λ2 − 4(h̄ωk + P(k))λ + 2(h̄ωk + P(k))ε − ε2 + φ4k!ρ2 = 0.

(20)

After some algebra, the energy eigenvalues (i.e., square roots of the above equation in λ) of
Hk are obtained:

λI
k = h̄ωk + P(k) +

√
(h̄ωk + P(k) − ε)2 + φ4k!ρ2

2
,

λII
k = h̄ωk + P(k) −

√
(h̄ωk + P(k) − ε)2 + φ4k!ρ2

2
.

(21)

It is easily checked that for k = 1, P (k) = 0 and for φ = −1, one obtains the eigenvalues
λ

I,II
1 determined in [5]. These are the energy eigenvalues of the Hamiltonian (1). The next

step now is to calculate the associated eigenvectors of the above eigenvalues λ
I,II
k . Indeed, we

propose to consider two cases: the first case is for φ = −1 and the second one is for φ = +1.
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3.1. The first case: φ = −1

Considering φ = −1, the eigenvalues (21) are given by

λI
k = h̄ωk + P(k) +

√
(h̄ωk + P(k) − ε)2 − 4k!ρ2

2
,

λII
k = h̄ωk + P(k) −

√
(h̄ωk + P(k) − ε)2 − 4k!ρ2

2
.

(22)

For the sake of simplicity, we can impose P(k) = 0 and the eigenvalues λ
I,II
k are of the form

λI
k = h̄ωk +

√
(h̄ωk − ε)2 − 4k!ρ2

2
, λII

k = h̄ωk −
√

(h̄ωk − ε)2 − 4k!ρ2

2
. (23)

The following relations are considered as in [5]:

|h̄ωk − ε| � 2ρ
√

k!, 2ρ
√

k! = (h̄ωk − ε) sin θk, (24)

and the Hamiltonian matrix given by (19) is written as follows:

Hk =
(

ε
2 ρ

√
k!

−ρ
√

k! h̄ωk − ε
2

)
,

=
(

ε
2

1
2 (h̄ωk − ε) sin θk

− 1
2 (h̄ωk − ε) sin θk h̄ωk − ε

2

)
. (25)

Taking into account the following equation(
ε
2

1
2 (h̄ωk − ε) sin θk

− 1
2 (h̄ωk − ε) sin θk h̄ωk − ε

2

) (
A

B

)
= λ

I,II
k

(
A

B

)
, (26)

the associated eigenvectors of λ
I,II
k are determined:

∣∣ψ I
k

〉 = sin
θk

2

∣∣∣∣0,
1

2

〉
+ cos

θk

2

∣∣∣∣k,−1

2

〉
, for λI

k = h̄ωk

2
(1 + cos θk) − ε

2
cos θk, (27)

with A = sin θk

2 and B = cos θk

2 .

∣∣ψ II
k

〉 = cos
θk

2

∣∣∣∣0,
1

2

〉
+ sin

θk

2

∣∣∣∣k,−1

2

〉
, for λII

k = h̄ωk

2
(1 − cos θk) +

ε

2
cos θk, (28)

with A = cos θk

2 and B = sin θk

2 .
In particular, for k = 1, it is easily checked that ψ I

k and ψ II
k become respectively ψ I

1 and
ψ II

1 which were determined in [5].

3.2. The second case: φ = +1

Taking into account φ = +1 and imposing P(k) = 0, the eigenvalues (21) become

λI
k = h̄ωk +

√
(h̄ωk − ε)2 + 4k!ρ2

2
, λII

k = h̄ωk −
√

(h̄ωk − ε)2 + 4k!ρ2

2
. (29)

Accordingly, the relations considered in equation (24) become

|h̄ωk − ε| � 2ρ
√

k!, 2ρ
√

k! = (h̄ωk − ε) sinh θk. (30)
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Following the same method used in the previous case, the eigenvectors associated with above
eigenvalues (29) are written as follows:∣∣ψ I

k

〉 = sinh
θk

2

∣∣∣∣0,
1

2

〉
+ cosh

θk

2

∣∣∣∣k,−1

2

〉
, for λI

k = h̄ωk

2
(1 + cosh θk) − ε

2
cosh θk,

∣∣ψ II
k

〉 = cosh
θk

2

∣∣∣∣0,
1

2

〉
− sinh

θk

2

∣∣∣∣k,−1

2

〉
, for λII

k = h̄ωk

2
(1 − cosh θk) +

ε

2
cosh θk,

(31)

For H �= H † (i.e., for φ = −1), it can be easily observed that two states given by (27) and
(28) are not orthogonal to each other. But one can prove that the states given by equation (31)
(i.e., for φ = +1,H = H †) are orthogonal. This property is a consequence of the Hermiticity
of H. Hence, one can find the next excited states, by considering the next invariant subspace
which is spanned by the vectors

∣∣1, 1
2

〉
and

∣∣k + 1,− 1
2

〉
. The eigenvalues and eigenvectors for

this doublet can be determined following the same method used previously.

3.3. The excited states

The next step is to generalize the previous results to the invariant subspace which is spanned
by the vectors

∣∣n, 1
2

〉
and

∣∣n + k,− 1
2

〉
. Following the same technique used in the previous

section and after some algebra, the Hamiltonian matrix for the above doublet is written as

Hn+k =
(

h̄ωn + P(n) + ε
2 ρ

√
n + 1 · · ·√n + k

φρ
√

n + 1 · · · √n + k h̄ω(n + k) + P(n + k) − ε
2

)
. (32)

For the sake of simplicity, we impose P(n) = P(n + k) = 0 and Hn+k is of the form

Hn+k =
(

h̄ωn + ε
2 ρ

√
n + 1 · · ·√n + k

φρ
√

n + 1 · · · √n + k h̄ω(n + k) − ε
2

)
(33)

and its eigenvalues are

λI
n+k = h̄ω(2n + k) +

√
(h̄ωk − ε)2 + φ4ρ2(n + 1) · · · (n + k)

2
,

λII
n+k = h̄ω(2n + k) −

√
(h̄ωk − ε)2 + φ4ρ2(n + 1) · · · (n + k)

2
.

(34)

In particular, putting k = 1 and φ = −1 in (34), the above eigenvalues become the eigenvalues
λ

I,II
n+1 associated with the operator H given by equation (1). These eigenvalues were determined

in [5].
Indeed, putting 2ρ

√
n + 1 · · ·√n + k = (h̄ωk − ε) sin θn+k and 2ρ

√
n + 1 · · · √n + k =

(h̄ωk − ε) sinh θn+k in equation (34) respectively for φ = −1 and for φ = +1, we find the
eigenvectors associated with the doublet

∣∣n, 1
2

〉
and

∣∣n + k,− 1
2

〉
.

Let us first consider φ = −1, the eigenvectors associated with this doublet are∣∣ψ I
n+k

〉 = sin
θn+k

2

∣∣∣∣n,
1

2

〉
+ cos

θn+k

2

∣∣∣∣n + k,−1

2

〉
,

for λI
n+k = h̄ωn +

h̄ωk

2
(1 + cos θn+k) − ε

2
cos θn+k,

∣∣ψ II
n+k

〉 = cos
θn+k

2

∣∣∣∣n,
1

2

〉
+ sin

θn+k

2

∣∣∣∣n + k,−1

2

〉
,

for λI
n+k = h̄ωn +

h̄ωk

2
(1 − cos θn+k) +

ε

2
cos θn+k.

(35)
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Finally, considering φ = +1 for equation (34), the eigenvectors for the doublet
∣∣n, 1

2

〉
and∣∣n + k,− 1

2

〉
are of the form∣∣ψ I

n+k

〉 = sinh
θn+k

2

∣∣∣∣n,
1

2

〉
+ cosh

θn+k

2

∣∣∣∣n + k,−1

2

〉
,

for λI
n+k = h̄ωn +

h̄ωk

2
(1 + cosh θn+k) − ε

2
cosh θn+k,

∣∣ψ II
n+k

〉 = cosh
θn+k

2

∣∣∣∣n,
1

2

〉
− sinh

θn+k

2

∣∣∣∣n + k,−1

2

〉
,

for λI
n+k = h̄ωn +

h̄ωk

2
(1 − cosh θn+k) +

ε

2
cosh θn+k.

(36)

Note that all the discussions considered in the previous section are confirmed by these
generalized results.

4. Quasi-exactly solvable Hamiltonians

In this section, let us consider an extension of the Jaynes–Cummings Hamiltonian which
includes two-photon interaction:

H2 = ε

2
σ3 + h̄ωa†a + ρ

(
σ+a

2 + σ−a†2)
. (37)

The matrix form of the above Hamiltonian leads to

H2 =
(
h̄ωa†a + ε

2 ρa2

ρ(a†)2 h̄ωa†a − ε
2

)
. (38)

It is clear that this Hamiltonian H is similar to the one reported in [11] and is also a particular
case of the Hamiltonian given by equation (13) (i.e., if k = 2, P (a†a) = 0), and one can
easily prove its exact solvability. Indeed, if one would like to construct a JC-type Hamiltonian
including both one-photon and two-photon interaction, the above Hamiltonian is modified as
follows:

H12 =
(

h̄ωa†a + ε
2 ρa2 + ρ1a

ρ(a†)2 + ρ̂1a
† h̄ωa†a − ε

2

)
. (39)

where ρ, ρ1, ρ̂1 are, a priori, arbitrary constants.
Unfortunately, the corresponding operator H12 is not any longer exactly solvable. Indeed,

it is easy to show that H12 does not admit any finite-dimensional invariant vector spaces.
Accordingly, it is impossible (to our knowledge) to find its energy spectrum by algebraic
methods.

In order to restore, at least in part, a certain algebraic solvability of H12, one can attempt
to supplement the Hamiltonian H12 with an appropriate interaction term. After some algebra,
one can convince oneself that adding an interaction term of the form

HI = 1

n

(
0 ρ1aa†a

ρ̂1a
†aa† 0

)
(40)

leads to a new Hamiltonian HT = H12 + HI which is quasi-exactly solvable, as we will now
demonstrate.

Assuming n to be an integer and redefining c ≡ − ρ1

n
, ĉ ≡ − ρ̂1

n
, the operator HT is of the

form

HT =
(

h̄ωa†a + ε
2 ρa2 + ca(a†a − n)

φρ(a†)2 + ĉ(a†a − n)a† h̄ωa†a − ε
2

)
, (41)
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where a† and a are respectively the usual creation and annihilation operators and ε is chosen
as previously according to ε = 2µB0.

The main idea now is to reveal that the above operator HT is quasi-exactly solvable (QES).
In this purpose, we construct a finite-dimensional vector space which is invariant under the

action of HT . Let us now apply the Hamiltonian H to the states
(|N〉

0

)
and

(
0

|M〉
)

with N,M ∈ N

as follows:

HT

(|N〉
|M〉

)

=
( (

h̄ωN + ε
2

)|N〉 + ρ
√

M(M − 1)|M − 2〉 + c
√

M(M − n)|M − 1〉
φρ

√
(N + 1)(N + 2)|N + 2〉 + ĉ

√
N + 1(N + 1 − n)|N + 1〉 +

(
h̄ωM − ε

2

)|M〉

)
.

(42)

In order to be in agreement with the invariance of the two vectors states
(|N〉

0

)
and

(
0

|M〉
)

under

the action of the Hamiltonian HT , we have to impose the value of the integer n according to
n = M = N + 2 (i.e., N = M − 2). Taking into account the above fixed value of n, we obtain

HT

(|N〉
|M〉

)
=

( [(
h̄ωN + ε

2

)
+ ρ

√
(N + 2)(N + 1)

] |N〉[
h̄ω(N + 2) − ε

2 + φρ
√

(N + 1)(N + 2)
] |N + 2〉 − ĉ

√
N + 1|N + 1〉

)
.

(43)

Finally, the Hamiltonian HT is of the new form

HT =
(

h̄ωa†a + ε
2 ρa2 + ca(a†a − (N + 2))

±ρ(a†)2 + ĉ(a†a − (N + 2))a† h̄ωa†a − ε
2

)
. (44)

Obviously, from equation (43), one can easily check that the Hamiltonian HT preserves the
finite-dimensional vector space, namely,

Vn = span

{(|j 〉
0

)
,

(
0
|k〉

)
, j = N, . . . , 0; k = N + 2, . . . , 0

}
, (45)

and n is replaced by N + 2. From this, we conclude that the Hamiltonian HT is quasi-exactly
solvable. Hence, the terms of perturbation added to H12 have broken its non-solvability.

Note that it is also easy to reveal the quasi-exact solvability of the operator expressed
in equation (41) by considering the matrix Hamiltonian equation (41) in terms of differential
expressions and variable x. Replacing the operators a† and a respectively by their differential
expressions given by equation (3), performing the standard gauge transformation as

H̃ T = exp

(
ωx2

2

)
HT exp

(
−ωx2

2

)
, (46)

and thus, after some algebra, we obtain a matrix Hamiltonian which preserves the finite-
dimensional vector space of the form Vk = (Pk(x), Pk+2(x))t with k ∈ N and n = k + 2 (i.e.,
n which is expressed in equation (41)). This operator H̃ T (therefore HT ) is quasi-exactly
solvable because it is expressed in terms of the integer n which is fixed as n = k + 2.

5. Spectral properties

In this section, we would like to emphasize a few properties of the spectrum of the Hamiltonian
discussed above. First, we stress that for given k the JC model admits k levels which are
ρ-independent and which are not involved in the list given above. They are of the form

ψj =
( �0

|j 〉
)

, 0 � j � k − 1,
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Figure 1. The first few energy levels in the k = 2 JC Hamiltonian for ε = 1 and φ = 1.

Figure 2. The first few energy levels in the k = 2 JC Hamiltonian for ε = 1 and φ = −1.

where �0 denotes the null vector of the Hilbert space. The corresponding eigenvalue is
Ej = j − ε

2 .
The spectrum of the JC model (and of its generalizations for k > 1) varies considerably

with the parameter ρ. In figure 1, we show the evolution of six levels in the k = 2, φ = 1
case. They correspond to the two ρ-independent eigenstates and the ones with n = 0, 1 in
equation (34). In figure 1 and in the following, we assume ε = 1 for simplicity but the
features pointed out below remain similar for ε �= 1. The same levels corresponding to the
non-Hermitian case φ = −1 are reported in figure 2. The contrast with figure 1 is obvious.
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Figure 3. The first few energy levels in the QES deformed k = 2 JC Hamiltonian as a function of
the parameter θ , the energy level E = −1/2 (solid line) is independent of ρ.

Couples of eigenvalues regularly disappear at finite values of the coupling constants ρ. So
that, at finite ρ only a finite number of real eigenvalues subsist, the other being real. In this
respect, the Hamiltonian is like a quasi-exactly solvable operator.

The energy levels displayed in figure 1 correspond to the six lowest ones in the limit
ρ = 0. The figure clearly shows that they mix relatively quickly for increasing ρ and that, for
instance, eigenvectors involving two or more quanta become the ground state for ρ ∼ 1.

We have studied the evolution of the spectrum when the QES extension of the model,
H12 = ρa2 + θa

(
1 − 1

N+2a†a
)

namely characterized by the new coupling constant θ , is

progressively switched on. Note that the vector ψ0 = (�0, |0〉)t is an eigenvector with
E = −ε/2, irrespectively of ρ, θ .

In the case ρ = 0, N = 1, the effect of the new term on the eigenvalues under consideration
leads to

E = − 1
2 , 1

6 (3 ± 4θ), 1
6 (9 ± 2

√
2)θ, 5

2 .

These levels are indicated in figure 3 by the dotted lines and it is clearly seen that they also
lead to numerous level crossing.

The evolution of the eigenvalues corresponding to the case ρ = 1 is displayed by
the dashed lines in figure 3, supplemented by the black line E = −1/2 which is present
irrespectively of ρ. The figure clearly shows that the occurrence of the new term induced only
one level mixing, namely two levels cross at E = −1/2 for θ = 1.5. For larger values of ρ,
e.g. ρ = 2, the analysis reveals that the algebraic eigenvalues depend only weakly on θ .

6. Series expansion and recurrence relations

Here, we would like to present another aspect of the QES Hamiltonian presented in the
previous section. Following the ideas of [15], we will construct the solution for energy E
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under the form of a formal series in the basic vector whose coefficients are polynomials in E.
More precisely, we write the solution of the equation

HT ψ = Eψ, (47)

in the form

ψ =
( ∑∞

j=0 pj (E)|j 〉∑∞
j=−2 qj (E)|j + 2〉

)
(48)

where HT is given by equation (41). After some algebra it can be seen that the polynomials
pj (E), qj (E) obey the following recurrence relations:

Aj+1Pj+1 + BjPj = 0, (49)

where

Aj+1 =
(

ρ
√

(j + 2)(j + 3) −(
E − (j + 1) − ε

2

)
0 ĉ(j + 2 − n)

√
j + 2

)
,

Bj =
(

c(j + 2 − n)
√

j + 2 0

−(
E − (j + 2) + ε

2

)
ρ
√

(j + 1)(j + 2)

)
,

Pj =
(

qj

pj

)
, j = −2,−1, 0, 1, . . . .

(50)

These equations have to be solved with the initial conditions

q−2 = 0, q−1 = N , (51)

with N fixing the normalization of the solution. Then, the solution for qj turns out to be a
polynomial of degree E2j . The quasi-exact solvability of the system leads to the fact that An−1

is not invertible and that pn−1 can be chosen arbitrarily. With the choice pn−1 = 0 it turns out
that all polynomials pj , qj with j � n − 2 are proportional to qn−3(E). As a consequence for
fixed n and for the values of E such that qn−3(E) = 0, the series above is truncated and the
set of algebraic eigenvectors are recovered. We would like to stress that series considered in
this section are built with the basis vector of the harmonic oscillator and not on monomials
in x contrasting with the construction of [15]. In the case of standard QES equations [15],
it appears three terms’ recurrence relations which lead to sets of orthogonal relation. In the
case of systems of QES equations addressed in [16], the recurrence relation is also three terms
but the situation here is quite different. Actually, it is to our knowledge, an open question to
know whether the set of polynomials (pj (E), qj (E)) is somehow orthogonal as it is the case
for standard scalar equation.

7. Hidden algebraic structures

As pointed out in the previous sections, the different Hamiltonians studied here possess the
property that their spectrum can be (partly or fully) computed. This property is deeply related
to the fact that the corresponding operators are elements of the enveloping algebra of particular
graded algebra in an appropriate finite-dimensional representation. The classification of linear
operators preserving the vector spaces V(m, n) = (Pm(x), Pn(x))t was reported in [10]. It is
shown that these operators are the elements of the enveloping algebra of some nonlinear graded
algebra depending essentially on |m − n|. Note that, in the present context, the difference
|m − n| is nothing else but the parameter called k in section 3. The cases k = 1 and k = 2
are special because the underlying algebra is indeed a graded Lie algebra. In the case k = 1,
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related to the conventional JC model, the Hamiltonian is an element of the enveloping algebra
of osp(2, 2), in the representation constructed in [9]. The generators involved in this relation
do not depend explicitly on n, i.e. on the dimension of the representation, explaining that the
Hamiltonian is exactly solvable. Finally, in the case k = 2, the Hamiltonian is an element of
the graded Lie algebra q(2), as shown in [17, 18]. This algebra possesses an sl(2) × U(1)

bosonic subalgebra and six fermionic operators split into three triplets of the sl(2) subalgebra.
In the case of the JC model corresponding to k = 2, the Hamiltonian is independent of the
dimension of the representation n and the model is exactly solvable. For the modified model
of section 4, the supplementary interaction term HI defined in (40) depends on n and the
operator admits only the vector space Vn as finite-dimensional invariant vector space.

8. Conclusions

In this paper, we have considered several extensions of the Jaynes–Cummings (JC) model
by adding to its original Hamiltonian the polynomial P(a†a) of degree d � 2 and φ = ±1
in the non-diagonal interaction term. In fact, considering the sign φ = −1, these extended
Hamiltonians are non-Hermitian and not PT invariant but they satisfy the pseudo-Hermiticity
with respect to different operators P and σ3. This new property reveals the reality of the energy
spectrum which has been constructed algebraically. The Hamiltonians become Hermitian
when one considers φ = +1. Accordingly, these Hamiltonians are completely solvable as it
has been pointed out by using standard QES techniques.

Several well-known properties of Hermitian Hamiltonians are not kept with the pseudo-
Hermitian one. One example is the orthogonality of eigenstates. We have shown in this paper
that the eigenstates corresponding to the doublets

∣∣0, 1
2

〉
and

∣∣k,− 1
2

〉
are not orthogonal to each

other, however, they are orthogonal to all eigenstates corresponding to other doublets. The
eigenstates of any particular doublet are orthogonal to each other only if θm = mπ (i.e., with
m = 0, 1, 2, . . . , k, . . . , n + k). This implies ρ = 0 because it depends on sin θm. In fact, as
the energy eigenvalues are entirely real, it is impossible to have all eigenstates orthogonal to
each other. This is explained by the unbroken symmetry of the operator Pσ3. But for complex
energy eigenvalues the orthonormality condition is satisfied by all the associated eigenstates.
All these discussions are the result of the scalar product applied to those eigenstates.

We have constructed a JC-type Hamiltonian describing both one- and two-photon
interactions in terms of quasi-exactly solvable operators. This involves a very specific
interaction term of degree 1 in the creation and annihilation operators which can be seen
as a perturbation of more conventional p-photon interaction terms. Several properties of this
new family of QES operators have been presented. Namely, (i) they can be written in terms of
the generators of the graded Lie algebra osp(2, 2) in a suitable representation and (ii) when
expressed as series, the formal solutions of HT ψ = Eψ lead to a different type of recurrence
relation between the different terms of the series.
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